MOTION OF A LIQUID IN A FRACTURED POROUS STRATUM
WITH UNSTEADY-STATE FILTRATION
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Papers [1-4] are devoted to investigation of the motion of a homogeneous liquid in a fractured porous
stratum with unsteady-state filtration. In [3] a study was made of the motion of a homogeneous liquid to-
ward a central borehole from a round fractured porous stratum of infinite extension, and the conclusion
was drawn that the curve of the re-establishment (lowering) of the face pressure of the borehole after shut-
down (start-up) of the well is of a "two-layer" character. Paper [4] is devoted to a substantiation of such
a change in the re-establishment (lowering) of the face pressure of the borehole. However, both in [3] and
in [4] only approximate formulas describing this process are obtained. The present paper gives exact solu-
tions of the problems of the unsteady-state filtration of a homogeneous liquid foward a central borehole
from round fractured porous strata in two characteristic cases; when the medium has an impermeable ex-
ternal boundary, and when the medium is unbounded in extension. The article presents numerical calcula-
tions which confirm the deduction that the curve of the re-establishment (lowering) of the face pressure of
the borehole has a "two-layer" character of the change in the case where the fractured porous stratum is
unbounded in extension. In the case of a closed fractured porous stratum, the curve for the change with
time of the face pressure of the borehole is always greater than that for a granular medium. In the solution
of the problems it is assumed that the output of the borehole, which is ideal in character with respect to the
degree of opening, is constant over the course of the whole process of exploitation.

In accordance with the theory of the motion of a homogeneous liquid in a fractured porous medium
proposed in [1-3], solution of the problem posed reduces to integration of the system of equations
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where « is a parameter of the fractured porous medium, characterizing the exchange of liquid between
slightly permeable blocks and fractures; p, and p(§, 7) are the initial and simultanecus pressures, respec-
tively; m is the porosity; k and § are the coefficients of permeability and elastic capacity; u is the viscos-
ity; t is the time; r, Iy and rj are the instantaneous radius, the radius of the borehole, and the radius of
the impermeable external boundary of the stratum. The superscripts 1 and 2 in the functions of the pres-
sure correspond to media which are unbounded in extension and closed; and the subscripts correspond to
the systems of blocks and fractures of the medium.

Applying a Laplace transform with respect to the time to systems (1) and boundary conditions (3}-(5),
and then eliminating the function for the lowering of the pressure in the system of blocks from the system

obtained, we can write
2y dgd ;
St —SIPE9 =0 =1 )

where
Sy =slo(l —a)s -+ A {(1 —w)s+ A1t 8
§ is the parameter of the Laplace transform, and ¥ (§, s) is a Laplace transform of the function ¥ (£, 7).
The general solution of Egs. (7) has the form [5, 6]
¥PE ) = AL VS0 + BEEVS)  a=12) ©)

Here Ij(x) and Ky(x) are Bessel functions of zero order with an imaginary argument of the first and
second kinds, respectively.

Finding the integration constants A and B from boundary conditions (3) and (5) for an infinite stratum
and (3), (4) for a closed stratum, to which a Laplace transform has previously been applied, the solutions
of the problem can be represented in the form

TP E ) = Ko €V S sV SeKo (V 51 (10)
D = R T AT R o
Using the relationship from [5]
ST, 9)ls.ms = e — “:é B0 (5, R) exp (— B,21) (12)
where
R (19

the inverse transform of (11), using the generalized Efros multiplication theorem [7], may be found in the
form
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B, are the roots of the equation

J1(BaB) Y1 (Br) — J1(Ba) Y1 (BaR) =0 (16)
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Jv(x) and Y, (x) (v =0.1) are Bessel functions of a real argument, of the first and second order with respect
to v, respectively.
With £ =1, using the recurrence formula [8]
T (@ Yo (@) —Jo @ Y1 (@) =2/ mz : (17)

the expression for the lowering of the pressure at the wall of a borehole, for a fractured porous stratum
with continuous removal of the liquid, can be represented in the form

> U (1,R) — B2
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where
U.(1,R)= J1(B.R) [J2 (BnH) — J? (Bn)]ul (19)

Formula (18) may be cast into form convenient for calculations if the corresponding formula for a
granular medium is used [5, 6]
0.5 42t
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In view of the fact that at the initial moment of time (7 =0) the lowering of the pressure at the face
of the borehole must be equal to zero, from (20) we can set up the equality
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Taking account of (21), formula (18) is rewritten in the form
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Use of formula (22), which is an exact solution of the problem for a closed stratum, for any given
moment of time permits calculating the value of the lowering of the face pressure of a borehole when ex-
ploiting a deposit with fractured porous types of collectors and with continuous withdrawal of liquid.

It can be shown that with w=1, the term containing g(t, 9) reverts to zero, and formula (22) assumes
the form (20). The explanation of this is the fact that, with this value of the parameter of the fracture
capacity w, the starting system of equations also goes over into the equation of piezo-conductivity for a
granular medium.
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Making the transition as before from the transform to the inverse transform, an accurate solution to
the problem for an infinite fractured porous stratum can be found in the form
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If in (10) the parameter of the transform s is assumed to be sufficiently large, the quantity A in the
expression for S, can be neglected and, at small values of the time, the formula for the lowering of the face
pressure assumes the form

4 §1~—exp(——u‘z17/m)2 du 24)

W=\ TFurwe T
L]
Expression (24) differs from the exact formula for a granular medium only by the factor w=! with the
exponent.

.

It must be noted that in [3] asymptotic solutions are obtained tothe problems under consideration,
which are applicable with sufficiently large values of the time. In this case, in formulas (10) and (11), the
authors used approximate expressions for the Bessel functions of an imaginary argument, which facilitated
the transition to the inverse transform. These solutions have the form [3]

(1,9 ~05{lnt--0.800 B [ =X ] — mi (720 (25)

s 2 1 1 —)p — M
P00 = g o+ 7+ [t e (s
+0.25 (B2 — 1)? [(4In R — 3) R* - 2R? + 1] (26)
Ei(—=x) is an integral exponential function [9].

With w =1 or A — «, these solutions go over into the corresponding formulas for granular media
[5, 6]

PP (1, 7) s = 0.5 In7 + 0.4045 @7
0.5 42 4InR—3)RE|2R2 L ¢
W 1) b~ ey + SRR (28)

Formulas (20j, (24), (27), and (28), expressing the dependence of the lowering of the face pressure on
the time for granular media, are widely known in underground petroleum hydrodynamics, and have been
tabulated over a sufficiently wide range of change in the time [5, 6]. Such dependences are plotted using
solid lines on Figs,1and 2 for different deposits, for which the impermeable external contours are equal to
10 and 50 units of the dimensionless radius R. The dotted lines on these figures correspond to deposits
with fractured porous types of collectors at the same values of the radius R. The calculations were made
using formulas (22) and (26) at w=0.1 for both figures, and A =5-1073 and 5- 107% for Figs. 1 and 2, re-
spectively.
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Curves 3 and 3!, being envelopes of the above-mentioned curves, describe the change with time of the
face pressure for boreholes in deposits of inifinite extension, with fractured porous and granular types of
collector, respectively. The segments of these curves after branching were calculated using formulas (23)
and (25); the exact formulas (22) and (23), corresponding to closed and infinite strata, are in good agree-
ment.

The results of calculations with different values of the parameters w and A for an infinite stratum
are shown on Figs. 3 and 4 in semilogarithmic coordinates. The curves 3' on these figures correspond to
the same deposits as on Figs. 1 and 2. Curves 4 and 5 differ by the value of the parameter w equal to 0.1
and 0.01, respectively. The difference between Fig. 3 and 4 consists in values of the parameter A equal
to 5-10~% and 5 - 1078, respectively.

Curves 4 and 5 (Figs.3 and 4) confirm the two-layer character of the change in the curves for the
lowering of the face pressure in boreholes in a fractured porous stratum, with fixed values of the param-
eters w and A.

We note that, on the initial straight-line segment of curves 4 and 5 (Figs. 3 and 4) there is agreement
between the exact and asymptotic formulas (23) and (25).

From an analysis of the curves of all the figures presented, the following conclusions may be drawn
with respect to the motion of a liquid toward a central borehole in fracture porous strata, with unsteady-
state filtration:

1) the lowering of the face pressure of a borehole in a fractured stratum is greater than or equal to
the same value for a granular stratum, at an identical value of the time;

2) a decrease in the parameter of the fracture capacity w lowers the face pressure and, with an in-
crease in the time of exploitation, this lowering becomes equal to the lowering of the pressure in the case
of a granular medium, when both media are unbounded in their extension. Under these circumstances, the
value of the parameter A, characterizing the degree of retardation of the transfer of liquid between the
blocks and fractures of the medium, exerts a considerable effect onthe equalizationtime (curves 3, 4, and5);

3) the time dependence of the lowering of the free pressure of a borehole in an infinite stratum differs
from the same value for a granular medium by the quantity
. — AT L[ —AT
P (4, 7) — 8 (U, D)o = 0588 [ | — 0,588 (%) (29)
which reverts to zero with an increase in the exploitation time. Inthe case of a closed stratum, the follow-
ing relationship holds:
‘ 20 — o) —
;‘Z) (1, T) —_— g2) (1’ T) Im=l = _AE_R—Z_——i)_[i — BXp (m)] (30)

which, in distinction from the preceding, reverts to the constant

2(1 — o) AL (R? — 1)

at those values of time where

o 5aar) =

In conclusion we note that the values of the functions entering into the calculating formulas were
taken from [9-11].
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